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Outline: Experimental studies of snowflake 
divertor in NSTX  

  Tokamak divertor challenge 
  Snowflake divertor configuration  
  Snowflake divertor in NSTX 
•  Magnetic properties and control 
•  Core and divertor plasma properties  
•  Comparison with standard and 

radiative divertors 
•  2D transport model  

  Conclusions 
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  Divertor challenge 
•  Steady-state heat flux  
-  present limit qpeak ≤ 10 MW/m2 
-  projected to qpeak ≤ 80 MW/m2 for future devices 

•  Density and impurity control 
•  Impulsive heat and particle loads 
•  Compatibility with good core plasma performance 

  Spherical tokamak: additional challenge - 
compact divertor 

  NSTX (Aspect ratio A=1.4-1.5) 
•  Ip ≤ 1.4 MA, Pin ≤ 7.4 MW (NBI), P / R ~ 10 
•  qpeak ≤ 15 MW/m2, q|| ≤ 200 MW/m2 

•  Graphite PFCs with lithium coatings 

Poloidal divertor concept enabled progress in 
magnetic confinement fusion in the last 30 years 

National Spherical 
Torus Experiment 
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Various techniques developed for reduction of heat 
fluxes q|| (divertor SOL) and qpeak (divertor target) 

  Promising divertor peak heat flux mitigation solutions: 
•  Divertor geometry  

  poloidal flux expansion 

  divertor plate tilt 

  magnetic balance 

•  Radiative divertor 

  Recent ideas to improve standard divertor geometry 
•  X-divertor (M. Kotschenreuther et. al, IC/P6-43, IAEA FEC 2004) 
•  Snowflake divertor (D. D. Ryutov, PoP 14, 064502 2007) 
•  Super-X divertor (M. Kotschenreuther et. al, IC/P4-7, IAEA FEC 2008) 

fexp =
(Bp/Btot)MP

(Bp/Btot)OSP

Awet = 2πR fexp λq‖qpeak !
PSOL(1− frad)fgeo sinα

2πRSP fexpλq‖
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Attractive divertor geometry properties predicted 
by theory in snowflake divertor configuration  

  Snowflake divertor 
•  Second-order null 

-  Bp ~ 0 and grad Bp ~ 0;  Bp ~ r2 

 (Cf. first-order null: Bp ~ 0;  Bp ~ r) 
•  Obtained with existing divertor coils (min. 2) 
•  Exact snowflake topologically unstable 

  Predicted properties (cf. standard divertor) 
•  Larger low Bp region around X-point 
•  Larger plasma wetted-area Awet  (flux 

expansion fexp) 
•  Larger X-point connection length Lx 
•  Larger effective divertor volume Vdiv 

•  Increased edge magnetic shear 

  Experiments 
•  TCV (F. Piras et. al, PRL 105, 155003 (2010)) 

 snowflake-minus 
snowflake-plus 

Exact 
snowflake 
divertor 

D. D. Ryutov, PoP 14, 064502 2007 
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Outline: Experimental studies of snowflake 
divertor in NSTX  

  Tokamak divertor challenge 
  Snowflake divertor configuration  
  Snowflake divertor in NSTX 
•  Magnetic properties and control 
•  Core and divertor plasma properties  
•  Comparison with standard and 

radiative divertors 
•  2D transport model 
•  Conclusions 
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Possible snowflake divertor configurations were 
modeled with ISOLVER code 
  ISOLVER - predictive free-

boundary axisymmetric Grad-
Shafranov equilibrium solver 
•  Input: normalized profiles (P, Ip), 

boundary shape 
•  Match a specified Ip and β
•  Output: magnetic coil currents 

  Standard divertor discharge below: 
 Bt=0.4 T, Ip=0.8 MA, δbot~0.6, κ∼2.1 

Quantity Standard 
divertor 

Simulated 
snowflake 

X-point to target parallel length Lx (m) 5-10 10 
Poloidal magnetic flux expansion fexp at outer SP 10-24 60 
Magnetic field angle at outer SP (deg.) 1-2 ~1 
Plasma-wetted area Awet (m2) ≤ 0.4 0.95 
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Snowflake divertor configurations obtained in 
NSTX confirm analytic theory and modeling 

Standard Snowflake 

Bp 

fexp 
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Plasma-wetted area and connection length are 
increased by 50-90 % in snowflake divertor 

  These properties observed in first 2-3 mm of SOL λq ~ 6-7 mm when 
mapped to midplane 

  Magnetic characteristics derived from EFIT and LRDFIT equilibria
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Outline: Experimental studies of snowflake 
divertor in NSTX  

  Tokamak divertor challenge 
  Snowflake divertor configuration  
  Snowflake divertor in NSTX 
•  Magnetic properties and control 
•  Core and divertor plasma 

properties  
•  Comparison with standard and 

radiative divertor 
•  2D transport model  

  Conclusions 
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Significant core impurity reduction and good H-mode 
confinement properties with snowflake divertor 

  0.8 MA, 4 MW H-mode  
  κ=2.1, δ=0.8 
  Core Te ~ 0.8-1 keV, Ti ~ 1 keV 
  βN ~ 4-5 
  Plasma stored energy ~ 250 kJ 
  H98(y,2) ~ 1 (from TRANSP) 
  Core carbon reduction due to 

•  Medium-size Type I ELMs 
•  Edge source reduction 



V. A. SOUKHANOVSKII, TALK JI2.00002, 52nd APS DPP Meeting, Chicago, IL, 9 November 2010 13 of 23 

Strong signs of partial strike point detachment are 
observed in snowflake divertor  

  Heat and ion fluxes in the outer SP region decreased  
  Divertor recombination rate and radiated power are increased 
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Divertor profiles show low heat flux, broadened C III and  
C IV radiation zones in the snowflake divertor phase 

  Heat flux profiles reduced to 
nearly flat low levels, 
characteristic of radiative heating 

  C III and C IV emission profiles 
broaden 

  High-n Balmer line spectroscopy 
and CRETIN code modeling 
confirm outer SP detachment with 
Te ≤ 1.5 eV, ne ≤ 5 x 1020 m-3 

•  Also suggests a reduction of 
carbon physical and chemical 
sputtering rates 
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Outline: Experimental studies of snowflake 
divertor in NSTX  

  Tokamak divertor challenge 
  Snowflake divertor configuration  
  Snowflake divertor in NSTX 
•  Magnetic control 
•  Core and divertor plasma properties  
•  Comparison with standard 

divertor and radiative divertor 
•  2D transport model 
•  Conclusions 
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Snowflake divertor heat flux consistent with 
NSTX divertor heat flux scalings 

  Snowflake divertor (*): PSOL~3-4 MW, fexp~40-80, qpeak~0.5-1.5 MW/m2 

T. K. Gray et. al, EX/D P3-13, IAEA FEC 2010 
V. A. Soukhanovskii et. al, PoP 16, 022501 (2009) 

0.8 MA 

flux expansion 

* * *
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Snowflake divertor with CD4 seeding leads to 
increased divertor carbon radiation  

  Ip=0.9 MA, PNBI=4 MW, PSOL=3 MW 

  Snowflake divertor (from 0.6 ms) 
•  Peak divertor heat flux reduced from 

4-6 MW/m2 to 1 MW/m2 

  Snowflake divertor (from 0.6 ms)  
 + CD4 
•  Peak divertor heat flux reduced from 

4-6 MW/m2 to 1-2 MW/m2 
•  Divertor radiation increased further 
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Outline: Experimental studies of snowflake 
divertor in NSTX  

  Tokamak divertor challenge 
  Snowflake divertor configuration  
  Snowflake divertor in NSTX 
•  Magnetic control 
•  Core and divertor plasma properties  
•  Comparison with standard divertor  

 and radiative divertor 
•  2D transport model 
•  Conclusions 
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2D multi-fluid edge transport code UEDGE is 
used to study snowflake divertor properties 

  Fluid (Braginskii) 
model for ions and 
electrons 

  Fluid for neutrals 
  Classical parallel 

transport, 
anomalous radial 
transport  

  Core interface: 
•  Te = 120 eV 
•  Ti = 120 eV 
•  ne = 4.5 x 1019 

  D = 0.25 m2/s 
  χe,i = 0.5 m2/s 
  Rrecy = 0.95  
  Carbon 3 % 

Standard                      Snowflake 
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Radiated power is broadly distributed in 
the outer leg of snowflake divertor 

UEDGE model 
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UEDGE model shows a trend toward detachment in 
snowflake divertor outer leg (cf. standard divertor) 

In the snowflake divertor outer 
strike point region: 

  Te and Ti reduced 
  Divertor peak heat flux reduced 
  Particle flux low 

Experiment UEDGE model 
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NSTX studies suggest the snowflake divertor configuration may 
be a viable divertor solution for present and future tokamaks 

  Steady-state snowflake (up to 600 ms,  
 many τE’s) 

  Good H-mode confinement 
  Reduced core carbon concentration 
  Significant reduction in peak divertor heat flux 
  Potential to combine with radiative divertor for 

increased divertor radiation 

  This talk focused on divertor results. Planned 
future efforts with the snowflake divertor: 
  Improved magnetic control  
  Pedestal peeling-balooning stability 
  ELM heat and particle deposition profiles 
  Divertor impurity source distribution 
  Divertor and upstream turbulence (blobs) 
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Session PP9: Poster Session VI, 10 November, 
Wednesday PM - Snowflake divertor presentations 

  PP9.00149 : D. D. Ryutov et. al, General properties of 
the magnetic field in a snowflake divertor 

  PP9.00152 : M. V. Umansky et. al, Ion orbit loss effects 
on radial electric field in tokamak edge for standard 
and snowflake divertor configurations 

  PP9.00136 : F. Piras et. al, H-mode Snowflake Divertor 
Plasmas on TCV 
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Backup slides 
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Divertor heat flux mitigation is key for present 
and future fusion plasma devices  

  ST / NSTX goals: 
•  Study high beta plasmas at reduced collisionality 
•  Access full non-inductive start-up, ramp-up, 

sustainment 
•  Prototype solutions for mitigating high heat & 

particle flux 

  In an ST, modest q|| can yield high divertor qpk  
•  in NSTX, q||= 50-100 MW/m2 and qpk=6-15 MW/

m2 
•  Large radiated power and momentum losses are 

needed to reduce q|| 

  In NSTX, partially detached divertor regime is 
accessible only  
•  in highly-shaped plasma configuration with 

high flux expansion divertor (high plasma 
plugging efficiency, reduced q||) 

•  modest divertor D2 injection still needed 

ST-based Plasma 
Material Interface (PMI) 

Science Facility 

ST-based Fusion 
Nuclear Science 

(FNS) Facility

NSTX NSTX-U
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Heat flux mitigation is more challenging in 
compact divertor of spherical torus 

  NSTX 
•  Ip = 0.7-1.4 MA, tpulse < 1.5 s, Pin ≤ 7.4 MW (NBI) 
•  ATJ and CFC graphite PFCs 
•  P / R ~ 10 
•  qpk ≤ 15 MW/m2 

•  q|| ≤ 200 MW/m2 

Quantity NSTX DIII-D 

Aspect ratio 1.4-1.5 2.7 
In-out plasma boundary area ratio 1:3 2:3 
X-point to target parallel length Lx (m) 5-10 10-20 
Poloidal magnetic flux expansion fexp at outer SP 5-30 3-15 
Magnetic field angle at outer SP (deg.) 1-10 1-2 
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Open divertor geometry, three existing divertor coils and a good 
set of diagnostics enable divertor geometry studies in NSTX 

  Ip = 0.7-1.4 MA 
  Pin ≤ 7.4 MW (NBI) 
  ATJ and CFC graphite PFCs 
  Lithium coatings from lithium 
evaporators 
  Three lower divertor coils with 
currents 1-5, 1-25 kA-turns 
  Divertor gas injectors (D2, 
CD4) 
  Extensive diagnostic set 
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Upper divertor is unaffected by lower divertor 
snowflake configuration 
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High-n Balmer line emission measurements suggest 
high divertor recombination rate, low Te and high ne 

  Te=0.8-1.2 eV, ne=2-7 x 1020 m-3 inferred from modeling 

  Balmer series 
spectra modeled with 
CRETIN; Spectra 
sensitive to 
  Line intensity <-> 

Recombination rate 
  Te <-> Boltzman 

population 
distribution 

  ne <-> Line 
broadening due to 
linear Stark effect 
from ion and electron 
microfield 
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1D estimates indicate power and momentum 
losses are increased in snowflake divertor 

  1D divertor detachment model 
by Post 
•  Electron conduction with non-

coronal carbon radiation 
•  Max q|| that can be radiated as 

function of connection length for 
range of  fz  and ne 

  Three-body electron-ion 
recombination rate depends on 
divertor ion residence time 
•  Ion recombination time: τion~ 

1−10 ms at Te =1.3 eV 
•  Ion residence time: τion ≤ 3-6 ms 

in standard divertor, x 2 in 
snowflake 


